Technology that would show if a person is a “Criminal” or not is out

The Police in Durham are preparing to go live with an Artificial Intelligence (AI) system designed to help officers decide whether or not a suspect should be kept in custody.
The system classifies suspects at a low, medium or high risk of offending and has been tested by the force.

It has been trained on five years' of offending histories data.
One expert said the tool could be useful, but the risk that it could skew decisions should be carefully assessed.
Data for the Harm Assessment Risk Tool (Hart) was taken from Durham police records between 2008 and 2012.
The system was then tested during 2013, and the results - showing whether suspects did in fact offend or not - were monitored over the following two years.
Forecasts that a suspect was low risk turned out to be accurate 98% of the time, while forecasts that they were high risk were accurate 88% of the time.
This reflects the tool's built in predisposition - it is designed to be more likely to classify someone as medium or high risk, in order to err on the side of caution and avoid releasing suspects who may commit a crime.
During the trial period, the accuracy of Hart was monitored but it did not impact custody sergeants' decisions, said Sheena Urwin, head of criminal justice at Durham Constabulary.
"I imagine in the next two to three months we'll probably make it a live tool to support officers' decision making," she told the Media.
Ms Urwin explained that suspects with no offending history would be less likely to be classed as high risk by Hart, though if they were arrested on suspicion of a very serious crime such as murder, for example, that would have an "impact" on the output.
Prof Lawrence Sherman, director of the University of Cambridge's Centre for Evidence-based Policing, was involved in the tool's development.
He suggested that Hart could be used in various cases - such as when deciding whether to keep a suspect in custody for a few more hours; whether to release them on bail before a charge; or, after a charge has been made, whether to remand them in custody.
"It's time to go live and to do it in a randomised experiment is the best way," he said.
During the upcoming experiment, officers will access the system in a random selection of cases, so that its impact when used can be compared to what happens when it is not.
Last year, US news site ProPublica published a widely cited investigation into an algorithm used by authorities to predict the likelihood of an arrestee committing a future crime.
The investigation suggested that the algorithm amplified racial biases, including making overly negative forecasts about black versus white suspects - although the firm behind the technology disputes ProPublica's findings.
Some have expressed concerns over algorithms' potential to bias decision-making in certain contexts
"To some extent, what learning models do is bring out into the foreground hidden and tacit assumptions that have been made all along by human beings," warned Prof Cary Coglianese, a political scientist at the University of Pennsylvania who has studied algorithmic decision-making.
"These are very tricky [machine learning] models to try and assess the degree to which they are truly discriminatory."

The Durham system includes data beyond a suspect's offending history - including their postcode and gender, for example.
Mr. Paul Kola explains how he got 50% of his revenue after investing it in this profitable platform


Trending Posts

How to Recharge My Startimes Decoder Using My Phone Through GTbank Account